

Purpose

- Measure bunch by bunch relative luminosity
- 7 TeV operations
- O Located at Point 1 Atlas
- O Located at Point 5 CMS

BRAN installed @ 1R (Atlas)

BRAN Rack at Point 1

Point 1 Noise Measurements

Point 5 Electronics - Noise

Left side

Right Side

Point 5 Noise Measurement

Unterminated output of the preamp after cables @ the rack

Signal Tests at Point 5L

Inject pulse at detector Signal at shaper output 10 ns/div

Pre-Amp and shaper 20 ns/div

Point 5 Controller

Gas set at 10 atm on 9 June - Snapshot taken on 21 June

Lumi HW Commissioning Recap

- O Persistent 10 μs noise at 5R (ch A, B)
 - Filtered by shapers
- Occasional reboot of gas controller still needed
- Need software HV Interlock of gas pressure
- O CERN fixing gas leaks

Testing and Modeling

- O Goals
 - O Understand test of detector at SPS
 - Test our knowledge of Monte Carlo models so that we can us it as a tool
- Method
 - O Use FLUKA to model detector response

SPS Test

- o 350 GeV p's
- Final prototype
- Analog electronics
- Trigger on scintillator
- O Beam width
 - \circ σ mm

BRAN Setup SPS vs. Simulation

Ionization Chamber

Air

Detailed BRAN Setup

Absolute Pulse Height Calculation

Energy to produce an ion-electron pair in Ar

From Fluka

Amplifier gain

Cable attenuation

$$U = \frac{1}{2} \frac{\dot{E}_{Deposited}}{\dot{W}} \frac{\dot{g} \cdot \lambda}{B_d}$$

Since collecting the image charge

From a finite integration time of a triangular pulse (Ballistic Deficit)

SPS Test

- O Johannes Stiller (undergraduate) had done extensive work on this
- O Good agreement between data and simulation
 - We understand how to use FLUKA
- O Some small systematic errors not included
- O Detector performs as expected

4 quadrants imply a gap

- O Dead spot in chamber
- Tested with very narrow beam
- Gains of each channel were not normalized
- O Insignificant for wide beams (> a few mm)

Fluka Study of LUMI

- O Use Fluka to model LUMI in TAN
- Data files provided by LHCf at three LHC energies
- Files generated by DPMJET modal and projected to the TAN using EPICS

TAN Geometry in Fluka

Simulated Pencil Beam - Photo

Beam Size $|x,y| \le 0.01$ cm

[x,y,z] = [0,0,-13980]

Energy: 456.77 GeV

Study Response of Detector vs. Position

- O Use three energies
- LUMI segmented into four 4 cm detectors
- Will measure integral of this distribution
- Crossing angle looks good at 7 TeV

IP5 @ 7 TeV

Energy Scaling of LUMI

- O Very preliminary
- Plotting average pulse height
- Sum of all quadrants
- Need to check scaling of data
- O Big difference from 7 TeV to 3.5 TeV

Commissioning Plans - Outlook

- Ryoichi Miyamoto (Toohig fellow) actively involved and now at CERN as LTV
 - O LARP resident point of contact @CERN for Lumi monitors
- O First task understand noise levels of system
- O Strong dependence on LHC operating energy
 - O Preparing Fluka models to simulate various scenarios
 - O Good collaboration with other groups
 - O LHCf and V. Tanalov providing valuable input
- Commission first at IP5
 - O LHCF will not be in TAN for initial tuning @ Pt 1
 - Need absorber to produce showers

Commissioning Plans

without beam

- O Test with detector under pressure + bias
- O Background noise measurements with energized equipment
 - Repeat summer measurements with experiments running
- O Pulse height noise spectrum

Commissioning Plans

with beam, no collisions

- O Background studies with single circulating beam
 - O Beam-gas effects
 - Scraping and collimation effects
 - Other localized noise sources
 - O Data from different IP optics configurations
- O Integration with LHC timing system and firmware commissioning with beam
- Test coincidence with PMT

Commissioning Plans

with beams in collision

- Threshold studies
- O Correlation with PMT
- O Pulse height spectrum analysis
 - Comparison with simulations
- Energy dependent studies
 - When LHC operates at different energies

Summary

- O LUMI (BRAN) ready for LHC commissioning
- Have tested and studied LUMI prototype
 - O Tests agree absolutely with Monte Carlo Simulations
- O LUMI designed for 7 TeV operations
 - O Detailed simulations for response at lower LHC operations in progress
- We have an enthusiastic LARP crew plus our CERN hosts to commission detectors

Backup

BRAN@ 5L (CMS)

